
INDIVIDUELT STUDENTARBEID

IMT3101 Objektorientert systemutvikling

Jon Langseth

Table of contents

Table of contents..1
1. EL-Kontakt Vision...2
1.2. Positioning...2

1.2.1 Problem Statement...2
1.2.2 Product Position Statement..2

1.3. Stakeholder Descriptions..3
1.3.1 Stakeholder Summary..3
1.3.2 User Environment..3

1.4. Product Overview..3
1.4.1 Product Perspective...3
1.4.2 Assumptions and Dependencies...3
1.4.3 Needs and Features...4
1.4.4 Alternatives and Competition...4

1.5. Other Product Requirements...4
2. Development documents..5

2.1 Use Case diagram of EL-Kontakt..5
2.2 Mock-up of application. ..5
2.3 High level Use Case descriptions..6
2.3.1 Use Case ID: UC1...6
2.3.2 Use Case ID: UC2...6
2.3.3 Use Case ID: UC3...6
2.3.4 Use Case ID: UC4...6
2.3.5 Use Case ID: UC5...6

3 Discussion of appropriate methodology..7
3.1 Preface to discussion...7
3.2 Classification...7
3.3 Possible methodologies...9
3.3.1 Extreme Programming...10
3.3.2 RUP/dX:..10
3.3.3 Feature Driven Development, FDD..10
3.3.4 SCRUM...10
3.4 Selection of methodology for EL-Kontakt..11

1. EL-Kontakt Vision

1.2. Positioning

1.2.1 Problem Statement

The problem of: In a medium-to large electronics superstore, it is
necessary to utilize multiple suppliers of goods and
services. In such a service, access to information
like contact numbers, addresses, user names,
passwords and customer ID’s may quite
cumbersome, requiring personnel in an order-
placement or service/support situation to utilize
multiple sources of needed information, many of
which are poorly maintained. Often the information
is only known by a few persons, and in the absence
of these persons, key information may be
unavailable.

Affects sales, management and service personnel of
medium-to-large electronics superstores.

the impact of which is reduced productivity, time spent handling orders, or
service requests, is greatly increased by the need to
search for correct information regarding the
supplier of goods and/or services.

a successful solution
would be

building an application that centralizes information,
and thereby making information accessible and
easily maintainable.

1.2.2 Product Position Statement

For Elkjøp Gjøvik and Lillehammer
who Needs a simpler system of maintaining a contact

database, tailored for order-management and
service/support work.

The El-Kontakt is a standalone contact-database
that is tailored for the needs of Elkjøp, and gives a single

point of access through a simple GUI to needed
information.

Unlike current multiple, separate electronic and paper-
based lists

our product eliminates the search time needed to locate the
needed information. Through our solution, all
required information is located at the users’
fingertips, without the need to support a myriad of
standards.

1.3. Stakeholder Descriptions

1.3.1 Stakeholder Summary

Name Description Responsibilities
Elkjøp Gjøvik and
Lillehammer

Customer, contractor Contractor, and thereby supplies
the market need, approves funding,
monitors the projects progress.
Assumes responsibility for assuring
that the product meets the
requirement presented.

Sales personnel of
Elkjøp Gjøvik and
Lillehammer

Users of system in an
order-management and
maintenance situation

Is responsible for providing real-
world examples of needed
information, developing and
approving Use-case scenarios. Will
be the end users of the product.

Service personnel
of Elkjøp Gjøvik
and Lillehammer

Users of system in when
handling service
requests and handling
support

Is responsible for providing real-
world examples of needed
information, developing and
approving Use-case scenarios. Will
be the end users of the product.

Division managers
and store
management

Suppliers of information The managers and management are
responsible for providing the real-
world data, both during
development, and after deployment.

1.3.2 User Environment

Application will be used in conjunction with already existing sales/order management
application (POS). The system will not with current needs have to be integrated into
existing store-management/POS software, but should be able to be updated from
formatted Microsoft® Excel™ documents. The expected usage will be short sessions,
performed daily, as the user makes inquires regarding single orders/service request.
Software platform is Microsoft® Windows™ NT and 2000 based, running on low-
performance computers. Most systems have the Java2 runtime platform installed. The
likelihood of this system-base being upgraded in the near future is negligible. The
application will be required to be able to run on more than one computer at the time, and
will be accessed by up to five users simultaneously. Database storage in the form of a
centralized SQL server is not available, but there exists an operational LAN to which all
workstations are connected.

1.4. Product Overview

1.4.1 Product Perspective

At the time being, there exists no proper competitive software. The closest competitor
would be contact-management software like Microsoft® Outlook™, although these close-
to competitors do not fulfil the need for simple access to multiple elements of the
information. The system is to be regarded as stand-alone, as it will not be integrated into
other solutions, nor will it provide interfaces for external systems.

1.4.2 Assumptions and Dependencies

The application will be developed for the available Java2 runtime platform, and targeted
to the installed version of that software (1.4.0) on the Microsoft Windows NT operating
system. The system will assume that the data-storage will be performed as files on a
centralized, mountable network disk/share.

1.4.3 Needs and Features

Need Priority Features
Ease of use High The application must be simpler to use

than current solutions, to be viable.
Responsiveness Medium The application needs to be able to present

data, and respond to changes quickly, as
the primary focus of the application is
presenting stored information to user.

Completeness of
information

High The system must cater for all elements of
information currently in use. Where there
is ambiguousness in whether an
informational element deserves a separate
storage/view, alternate storage points must
be presented.

1.4.4 Alternatives and Competition

The alternative would be to continue using the non-structured approach of multiple
storage formats, non-standardisation and unsynchronized storage. This solution is
routinely used, and the day-to-day users have developed the skill of quickly locating
required information. The problem is the time needed to switch between systems, the
lack of synchronisation between the different users lists, and the daunting task of
updating information.

1.5. Other Product Requirements
The system must use a GUI, based on a list of entry’s, and a tab-separated area for
segmented display of information.

A complete response from entry-selection in a list, to display and editability of the entry,
must be performed in less than 0.5 seconds in 90% of all cases.

The creation of a new, blank entry, must be completed within 0.5 seconds from entering
and accepting the entry’s name. The dialogue for entering the name (primary
information) must be displayed within 1 second from requesting a new entry.

Switching between tabs must be performed in less than 1 second in all cases.

The system must store an updated entry immediately after storage is requested, or the
entry is closed/hidden. The storage must be completed in less than 2 seconds. Storage
must use a locking mechanism, to avoid simultaneous write operations.

2. Development documents

2.1 Use Case diagram of EL-Kontakt

SelectEntry

ShowSubdata

CreateEntry

EditEntry

ConfigureStorage

ImportData

Administrator
User

DeleteEntry

2.2 Mock-up of application.

To be seen as reference for all following Use Case descriptions.

2.3 High level Use Case descriptions.

2.3.1 Use Case ID: UC1

Name: SelectEntry
Summary: User clicks on a name in the list of names, and thereby selects it

(see mock-up). This action updates the information in the main area
of the application. The currently selected view/tab is updated, so
that all fields contain the information associated with the selected
name.

2.3.2 Use Case ID: UC2

Name: ShowSubdata
Summary: User can change between different sections of information. This is

performed by clicking on one of the tabs on the top of the main
window. This changes the selected view, by displaying relevant
fields of information, and updating those fields with information
stored about the currently selected name in the name list.

2.3.3 Use Case ID: UC3

Name: CreateEntry
Summary: User can create a new entry in the system by clicking on the “New”

button in the tool bar. This will present a GUI-dialogue window,
where the user will enter the name of the new entry. Selecting “OK”
in this dialogue, will create a new entry in the name list, sort the
list, and select the “General” tab of the main area. Most fields in
this window will be blank, as no information is stored, except for the
name itself.

2.3.4 Use Case ID: UC4

Name: EditEntry
Summary: With the currently selected entry displayed in the main area, the

User edits data, by selecting the text-field of interest, and changes
the data according to familiar GUI-usage. All fields on current
view/tab is available for editing, except “Name”, which statically
represents the name in the list-view. Storing is automatically
performed when user changes view/tab, selects a different name in
the name list, or one of the buttons on the tool bar.

2.3.5 Use Case ID: UC5

Name: DeleteEntry
Summary: The user can delete the currently selected entry completely, by

selecting the “Delete” button on the tool bar. This will present a
confirmation dialogue to the user, who clicks “OK” to accept, or
“Cancel” to abort the deletion operation.

3 Discussion of appropriate methodology

3.1 Preface to discussion

The preceding vision document, use case diagram and descriptions totals as a real
software engineering project. As a real, planned project, it makes a good basis for a
discussion of potential applicable software engineering methodologies. The only factor
that limits its applicability, is its size. The project is relatively small. The need for
development staff also seems low, it should be possible to perform the task set, by little
more than two developers. This limits the base for a discussion, as it seems that it will
become apparent, it will be easy to eliminate some of the more heavyweight
methodologies quite early.

It is important to make a note on exactly what this paper discusses, namely; what
methodology to use. It seems natural to start that off with asking what is a software
development methodology? The best suited, and perhaps most quoted definition, is the
definition given to system development methodologies, by Avison and Fitzgerald (1995).
A methodology is by this definition «a system of procedures, techniques, tools and
documentation aids, usually based on some philosophical view, which help the system
developers in their effort to implement a new information system». This is a far more
precise, though to many, confusing definition than what you will find in a dictionary. As
Cockburn (1999) quotes the American Miriam-Webster dictionary: «a series of related
methods and techniques». Although this definition may be complete, it is important to
remember that actual tools used, and the standard of documentation produced, is part of
the methodology.

3.2 Classification

I am in other words trying to find a suitable toolbox and philosophy for developing the
planned system. It seems to be a well established norm, that to select the correct
methodology, one has to categorize the problem at hand. This notion is brought forward
by both Avison & Taylor (1997), and Cockburn (1999), although the actual systems for
classification differ. Avison & Taylor (1997) presents five classifications for system
development projects, as follows.

1. Class 1. Well structured problem situations with a well-defined problem and
clear requirements.

2. Class 2. Well structured problem situations with clear objectives, but
uncertain user requirements.

3. Class 3. Unstructured problem situations with unclear objectives.
4. Class 4. Situations where there is a high user interaction with the system.
5. Class 5. Complex problem situations, combining two or more oh classes 1-4.

When trying to fit the problem at hand into this system of classification, I'll start by
looking at the how structured the problem is. The objective for this system is quite clear,
as the task to be completed, is simplifying access to, and centralizing location of
currently available information. In essence, it is a question of computerizing a manual
task. So it seems that structure alone would select class 1 or 2 of Avison & Taylor's
system. Considering the requirements of the system, there are three major requirement
areas that need to be satisfied. The actual information that is to be stored in the system,
the simplicity of interaction with the user, and the requirements set forth by the software
platform in use.

By performing a thorough examination of currently used information, and by doing
standard human-computer interface analysis, the two first areas would be simple to
identify, and pin down. As described by the vision document, the actual software
platform is not likely to change soon. As a conclusion, not only are the objectives clear,
but the requirements are also clear. This puts the project into class 1. There is still one
factor that has not been considered, and that is the degree of user interaction. This is a
system which is developed to increase the performance of the employees of Elkjøp, and
to reduce time spend searching for information. Although the application will be used
only for short a timespan every session, the degree of user interaction is high, and there
must be a high focus on user interaction, usability, and performance. This, as a
conclusion, will put the system in class 4.

What the use of the classification presented by Avison & Taylor actually means, will be
discussed later. First, let us take a look at the classification system presented by
Cockburn. He presents a matrix that divides problem classification into criticality on the
Y-axis, and number of people involved on the X-axis. The criticality of a project is defined
as what the severity a failure or defect of the system will be. The criticality is divided
into four groups, representing projects where a failure will cause respectively, the loss
of:

C: Comfort
D: Discretionary money
E: Essential money
L: Life

The X-axis, as mentioned, represents the number of people involved in the project. This
axis is also divided into sections, where section separators are set at 4, 20, 40, 100, 200,
500, and 500+. The numbers naturally represents the number of people actively involved
in the project, or estimated number of people to be involved. A margin should be taken,
Cockburn suggests +/- 20%. To give an example of the use of this matrix, a system for
managing a bank-to-bank transfer system, requiring a large range of features, would be
assumed to require a development staff of 50 people. This would put the system in an
E50 classification, it falls within the range 50-100, and failure will cause loss of essential
money.

To utilize this classification, Cockburn talks about large, and dense methodologies. A
large methodology, is one where many communication elements are in use, and a lot of
focus is put on communication. A dense methodology has elements that tighten control,
and thereby ensure correctness and robustness. As projects move along the X-axis, the
size of the methodology changes. A project involving 5 people requires less control of
communication than a project involving 150 people. As such, the latter project will
require a larger methodology. As a project moves along the Y-axis, the change in
criticality decides how dense the methodology needs to be. There needs to be more
formality and control of documentation and standards with a project of Life-critical
nature, than a project developing a new chat-client.

The EL-Kontakt application is one that requires few people involved. Considering only
development staff, an assumption is made at 2 persons. Counting the number of people
involved from Elkjøp, it would seem that more than 4-5 persons total would be
unnecessary. As Elkjøp already perform the task this application is to fulfill manually, it
would be wrong claiming that the failure of the application will cause loss of even
discretionary money. The class this project falls into will be the one closest to the origin
of the matrix, as a C2 project.

3.3 Possible methodologies

Now, what does all this classification actually lead to? What methodologies may be
applied to the project specified? Defining the project according to Avison and Taylor, as
a class 2 project, means that we should probably follow the recommendations given by
Avison an Taylor. We should therefore choose a methodology based on data modeling,
process modeling or prototyping. STRADIS, YSM, MerISE, SSADM, SDLC with
prototyping, or pure prototyping are suggested as methodologies. I cannot claim to have
much knowledge of any of these methodologies, except for SDLC, the systems
development life cycle, and pure prototyping.

Defining the project into class 4, would call for the use of socio technical approaches.
The prime example provided is ETHICS, Effective Technical and Human Implementation
and Computer based Systems. ETHICS introduces a host of stages, with discussions and
documentation at every stage, the need to develop a philosophy/ethic for the project, and
a great deal of inclusion of the customer. ETHICS may be poorly perceived by the
customers management. In such a small project as this, including all the aspects of
ETHICS will be overkill, and having to reduce ETHICS actually removes the arguments
to use it.

Avison and Taylor's text from Journal of Information Technology, 1997, is quite clearly
focused on structured methodologies, and does not mention object oriented approaches.
Also, the text was written prior to the establishment of the notion of “agile software
development”. As such, none of the agile methodologies are mentioned by A&T. This is
where Cockburn's system of classification assists. The fact that EL-Kontakt is a C2
project, gives the criteria that the methodology should be as lightweight and as loose as
possible. When it comes to recommendations, Cockburn does not provide any. So we
must look elsewhere, or rely on previous knowledge to find methodologies that fit this
bill.

The first keyword that springs to mind in such context, is the word “agile”. The concept
of agile methodologies, is an attempt at “a useful compromise between no process and
too much process, providing just enough process to gain a reasonable payoff“ (Fowler,
2003). The idea of agile development is using a methodology that is as lightweight as the
project allows. This is also why the term previously was lightweight methodologies when
talking about this type of development. Basically, this idea of using the most agile
methodology possible, is exactly what Cockburn talks about when he weights projects
into the C, D, E and L groups, and adjust communication needs according to number of
people involved.

The major names that formed the basis for the Agile Manifesto, and defining what agile
development means, where Extreme Programming (XP), SCRUM, Feature Driven
Development (FDD), Adaptive Software Development (ASD) and Crystal. Many others
also exist in this group, and proof of this can easily be found on the web site of the Agile
Alliance. In addition to the “real” agile methodologies, other more heavy ones may be
adapted and in some cases reduced or simplified to become agile. It is impossible to
examine every single one of all of the methodologies that fall into the group, either
directly or through adaptation, and it does not make much sense for a project this small.
Therefore I choose to look at, and evaluate only the ones I have at least vague knowledge
of.

3.3.1 Extreme Programming

Extreme programming, or XP, is probably the approach that is best known of all the agile
approaches. It is actually starting to get “old”, and as such is tried an tested on many
projects. The base of XP is to do more communication, more real development, more
testing, less paperwork and less administratively. Using a subset of the XP practices (up
to twelve) as a toolbox to satisfy the four values of communication, feedback, simplicity
and courage, this approach is highly evolutionary, as it views refactoring as one of the
most significant elements. Little future planning is performed outside of the current
iteration or cycle, the focus of planning is for the task at hand, and the testing cases for
the current task. Although XP focuses on doing more of what developers think is fun, it
still adds quite a bit of overhead into the process. Each bit of functionality must be
developed according to a user story, previous work may need refactoring according to
the new functionality, and there is a high need for customer and user interaction in the
process. XP seems to me as a great way to go if the project is dynamic and the number of
people involved is in the 5-50 range.

3.3.2 RUP/dX:

The Unified Process is absolutely an adaptable methodology, and even though it starts
out as anything but agile, it is quite possible to strip the methodology down into lighter
solutions. What RUP introduces that is most important to maintain is standardization of
document formats, and sane suggestions onto progress and management of the software
development process. The use of RUP phases and workflows, and the use of UML as the
documentation language may be seen as the base of an agile RUP approach. Still, for a
project to use a process that is completely RUP compliant, there needs to be some size or
criticality in the project. It would make little sense to assign roles and create all artifacts
used in a RUP project that involves little more than a short week of work.

dX is in my eyes a nice paradox. In many discussions about system and software
development RUP and XP are displayed as competitors, and incompatible solutions. It is
often claimed that a project can be defined as either a RUP project, or as an XP project,
and that the selection normally is unambiguous. It is therefore very interesting to note
that there exists an adaptation of RUP that actually is an implementation of XP. Or
rather, a version of XP that is also RUP. The same flexibilities and limitations continue to
be valid for dX as they are for the two parents. The methodology is agile and suitable for
lightweight development, but still requires an amount of management that makes it
potentially too heavy for a very lightweight project.

3.3.3 Feature Driven Development, FDD

The entire FDD process is driven by the need to satisfy the need of a set of features, or to
give certain functionality. The process is divided into five sections: Develop an overall
model, Develop feature list, Planning, Design by feature, Build by feature. The first three
sections are linear, and form the basis for the actual development performed in the more
iterative design and build by feature sections. By creating a solid model of the system up
front, and identifying the needed features, this methodology allows for a great deal of
focus on the actual implementation of the system. This is also a process that should be
manageable for even a minuscule team of developers.

3.3.4 SCRUM

The Scrum process is based on an incremental waterfall model. The additions to this
ancestry are most notably the notions of “sprint” and “scrum”. A sprint is a period of 30
days, in which the development team works on implementing a feature. The system
requirements and functionality is documented in the initial phases of development, just
as the introductory phases of the incremental development model. To the model, Scrum
adds the requirement that the “backlog”, consisting of use-cases and requirement specs
for a given feature, must be “expanded” by the team before entering a sprint. During the
30 day sprint, developers sit down 15 minutes every 24 hours, at a Scrum. This is a
meeting, detailing what has been done recently, and what needs to be done shortly. The
Scrum methodology also places focus on the importance of prototyping, and says that
“useful product functionality is delivered every thirty days as requirements, architecture,
and design emerge, even when using unstable technologies”. Scrum seems to be a
methodology that should be manageable for a small team. What might limit the use of
Scrum in a small project, is the fact that a sprint is 30 days. A lot of functionality in a
small system can be developed during 30 days.

3.4 Selection of methodology for EL-Kontakt

From the presentation of classification and possible methodologies, it should be possible
to make a suitable choice. As mentioned in the preface to the discussion, it is simple to
exclude the heavy methodologies as options for the project at hand. Using heavy
methodologies such as SSADM or ETHICS will not make sense for such a small project.
Too much time will be spent planning, creating documentation and managing the
information generated regarding the project development itself.

By being such a small project, methodologies like RUP, XP and dX can also easily be
discarded on much of the same argumentation. As the actual requirements are largely
clear, and both an object system model and required functionality can be easily deduced,
it will be unnecessary to use effort administrating a large set of roles, artifacts an a
library of documentation. The benefits of simple communication are to a great extent
naturally present when working with a development team of less than four persons, and
there i little to be gained by stressing communication, as RUP and XP do.

Still, the form of communication introduced by Scrum may be very valuable also for
such a small team. The daily powwow, or scrum, makes sure that all development is in
sync, and up to speed, when dividing tasks. But as mentioned, Scrum has a limitation in
the length of the sprint. Though it is possible to reduce the length of a sprint, the
benefits of using the sprint/scrum combination is lost when the sprint is shorter than a
week. EL-Kontakt is an application that should be possible to realize in a very short time,
with complete development from initial vision to finished product ought to be feasible
within the span of a month. This gives the conclusion that Scrum is less than optimally
suited.

This should narrow the selection down quite drastically. I have intentionally avoided
mentioning the more structured methodologies suggested by Avison & Taylor. I have
done this primarily because of the platform available and programming language of
choice, in combination with the nature of the project. By choosing Java as platform an
language, a strong focus is put on object orientation. Also, the nature of the tasks to be
completed would be easily mapped into an object oriented viewpoint. It is therefore
natural to avoid the structured methodologies, and focus on the object oriented ones. It
must not be forgotten that a structured methodology may be altered to fit an object
oriented approach, but trying to find a lightweight and agile methodology makes this
form of adaptation undesirable, when more modern and directly object oriented
methodologies exist.

Conclusion

I have three conclusions as to what methodology to choose for EL-Kontakt. The first, and
least likely to be applied, is pure prototyping. This is a development method that can
easily started, requires little administration, and the product is directly available for the
customer to evaluate. But pure prototyping will most likely lead to making too many
prototypes, an undesirable situation that makes the project drag along for a far longer
time than necessary. The second, and in my view, the best choice, is FDD. Setting the
system object model early should not be a problem, finding all required functionality
should be a simple task, and by documenting this basis for development, all that is left is
planning, and the actual development work. Using the FDD gives the project
documentation, structure, and a plan to follow, without too much authority and
methodology requirements. The FDD ought to be quite simple to understand, even with
its wealth of planning documents and diagrams. These plan documents seem daunting at
first look, but are basically tables telling what is to be done, and how complete is it.

The last of my conclusions is the one that is most probably going to be used. In this
solution planning is disregarded, or performed ad-hoc, and the system design will never
be influenced by strategic, long term decisions. Naturally what I am thinking of is not
really counted as a development methodology, but the “code and fix” approach is very
much practiced in projects of this magnitude and criticality. For small systems, the
approach often works quite well. Even though I conclude that this is the approach that is
most likely to be applied, it is by no means the one I recommend. It would naturally be of
great value to both developers and the contractor, Elkjøp, to actually be able to see what
should be, is, and will be performed, to have a plan, and a set of documentation. So my
preferred choice for this very small project is the Feature Driven Development
methodology.

Jon Langseth, 2004
References available by request.

